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Abstract—We present a formulation of the multiresolution
time-domain (MRTD) algorithm using scaling and one-level
wavelet basis functions, for orthonormal Daubechies and
biorthogonal Cohen–Daubechies–Feauveau (CDF) wavelet fami-
lies. We address the issue of the analytic calculation of the MRTD
coefficients. This allows us to point out the similarities and the dif-
ferences between the MRTD schemes based on the aforementioned
wavelet systems and to compare their performances in terms of
dispersion error and computational efficiency. The remainder of
the paper is dedicated to the implementation of the CDF-MRTD
method for scattering problems. We discuss the approximations
made in implementing material inhomogeneities and validate the
method by numerical examples.

Index Terms—Multiresolution analysis, scattering, time-domain
methods, wavelets.

I. INTRODUCTION

T HE multiresolution time-domain (MRTD) method [1]–[5]
has recently emerged as an efficient tool for time-domain

electromagnetic field analysis, with applications including mi-
crowave cavities and circuits [1], [3], [4] as well as scattering
by general targets [2]. In many cases, MRTD can save important
computational resources, as compared to the traditional finite-
difference time-domain method [6], without sacrificing solu-
tion accuracy. The main mechanisms by which MRTD achieves
computational efficiency are the higher order accuracy in the
spatial finite-difference approximations and the multiresolution
partitioning of the computational domain. With regard to the
latter, denser resolution is employed in zones with relatively fast
spatial field variation, while applying a lower resolution repre-
sentation in slowly varying regions.

In the existing literature on MRTD, the basis functions of
choice have included the Battle–Lemarie wavelet family [1], the
Haar wavelet family [2], the Daubechies scaling functions [3],
[4], the Deslauriers–Dubuc interpolating functions [5] (which
are related to the Daubechies wavelets), and the biorthogonal
Cohen–Daubechies–Feauveau (CDF) wavelet systems [6]. In a
previous paper [6], we demonstrated the advantages of the CDF
wavelet systemsvis-à-visthe Battle–Lemarie or Haar wavelet
families. In general, the choice of basis functions with minimal
support leads to a small stencil size and a large Courant stability
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limit [6], which in turn yield a computationally efficient scheme.
Another advantage of the reduced support of the basis functions
becomes apparent as we discuss the implementation of material
boundaries.

In this paper, we focus on the compactly supported wavelets
from the orthonormal Daubechies and biorthogonal CDF fam-
ilies. First, the Daubechies MRTD scheme is extended to in-
clude first-level wavelet functions (Section II). After reviewing
the CDF-MRTD formulation (Section III), we introduce an al-
gorithm for the analytic computation of the MRTD coefficients,
which is faster, more accurate, and more general than the numer-
ical integration utilized in [1]–[6]. A comparison between the
MRTD schemes based on low-order orthonormal Daubechies
and biorthogonal CDF wavelet systems in terms of numerical
performance is presented in Section IV. In order to implement
the CDF-MRTD scheme for scattering problems, we discuss
modeling the material inhomogeneities and the plane-wave in-
cident field (Section V). In Section VI, we present numerical
results on two-dimensional scattering configurations, empha-
sizing the efficiency of the method. Conclusions are drawn in
Section VII.

II. MRTD BASED ONORTHONOMAL DAUBECHIESWAVELETS

A. Formulation

The MRTD algorithm based on compactly supported or-
thonormal Daubechies scaling functions was presented in [3]
and [4]. Here, we extend the algorithm to include one-level
wavelet functions, from which we obtain a multiresolution
algorithm. Restricting the presentation to one dimension (for
simplicity), the field expansion can be written as

(1a)

(1b)

Here, we denote by and the scaling and the wavelet
function, respectively, displaced byunits. For time discretiza-
tion, we use rectangular pulses , where represents the
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shift in time units. The MRTD magnetic-field update equations
are

(2a)

(2b)

(2c)

(2d)

where

are the MRTD coefficients.

B. Calculation of the MRTD Coefficients

In previous MRTD papers based on Daubechies scaling func-
tions (as well as other MRTD schemes), the MRTD coefficients
, , and were computed by numeric integration (usually in

the Fourier domain). However, based on the algorithm presented
in [8], these coefficients can be derived analytically in the case
of compactly supported wavelet systems, starting directly from
the scaling/wavelet filter coefficients [9], without the need to ex-
plicitly compute the scaling/wavelet functions (or their Fourier
counterparts). Using the definition of the scaling and wavelet
filter coefficients

(3a)

(3b)

we introduce the following correlation coefficients:

with , with the sums over running
from and . In the above,
is the length of the nonzero scaling filter coefficient sequence.

We start with the calculation of the coefficients
, as described in [8]. Specifically,

these coefficients must satisfy the following linear system:

(4a)

(4b)

Notice that one of the equations in (4) is redundant and that
only a finite number of coefficients are nonzero, with in-
dices running from to . Once these coefficients
were found, the MRTD coefficients are given by the following
expressions:

(5a)

(5b)

(5c)

(5d)

Again, the number of nonzero MRTD coefficients is finite
and we can establish the following symmetry relationships:

, , ,
.

III. MRTD B ASED ON BIORTHOGONAL CDF WAVELETS

A. Formulation

The biorthogonal CDF-MRTD scheme was introduced and
analyzed in detail in [6]. In this paper, we consider only the
symmetric CDF (2, ) families of wavelets (where is half
the support length of the scaling function), for the purpose of
comparison with the orthonormal Daubechies wavelet families.
The field expansions in one dimension can be written as

(6a)



1754 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 7, JULY 2002

(6b)

The above notation assumes that both and peak
at . We obtain the following magnetic field update
equations:

(7a)

(7b)

(7c)

(7d)

where

B. Calculation of the MRTD Coefficients

The calculation of the MRTD coefficients in the case of the
CDF (2, ) biorthogonal wavelet expansion is similar to that
described for the Daubechies wavelet-based MRTD scheme. In
this case, we define

(8a)

(8b)

(8c)

(8d)

In the above, indicates the length of the
filter-coefficient sequence (notice that we use a symmetric form
of this sequence, with indices running from to ). We
also bring the other filter coefficient sequences, , and to
the same length, by zero-padding where needed. The correlation
coefficients are defined as

with , and the sums over running from
and . One can

show that the coefficients
formally satisfy the same set of equations as indicated in (4a)
and (4b). From here, the MRTD coefficients are computed as
follows:

(9a)

(9b)

(9c)

(9d)

The following symmetry relationships can be established:
, , ,
, .

IV. A NALYSIS OF DAUBECHIES-4 AND CDF (2, 2)
MRTD SCHEMES

In this section, we explicitly compute the MRTD coefficients
for the Daubechies-4 wavelet family (i.e., ) and for the
CDF (2, 2) wavelet family. The values of the nonzero correla-
tion coefficients , , , , as well as the MRTD coefficients
, , , and are given in Table I. As expected, thecoeffi-

cients are the same for the two wavelet families, which means
that the MRTD schemes based only on scaling functions from
these families are completely equivalent. However, theand
coefficients are different for the two wavelet families; therefore,
the two MRTD schemes are not identical at the wavelet-expan-
sion level. Similar conclusions can be drawn in general when
one compares the MRTD schemes resulting from expansions in
terms of Daubechies- and CDF (2, ) basis functions.



DOGARU AND CARIN: SCATTERING ANALYSIS BY MRTD METHOD USING COMPACTLY SUPPORTED WAVELET SYSTEMS 1755

TABLE I
(a) CORRELATION COEFFICIENTS FOR THEDAUBECHIES-4 WAVELET FAMILY . (b) MRTD COEFFICIENTS FOR THEDAUBECHIES-4 SCHEME.

(c) CORRELATION COEFFICIENTS FOR THECDF (2, 2) WAVELET FAMILY . (d) MRTD COEFFICIENTS FOR THECDF (2, 2) SCHEME

(a)

(b)

(c)

(d)

We can also compare other aspects related to the computa-
tional efficiency and performance of the MRTD schemes based
on Daubechies- or CDF (2, ) wavelet families.

The stability analysis [6] shows that the Courant numbers
at the stability limit are not identical, but very close for the
two schemes. In particular, for Daubechies-4, this limit is
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Fig. 1. Phase error (in degrees per wavelength) versus discretization rate for
MRTD schemes using expansion of the fields in terms of scaling and one-level
wavelet functions. For all schemes, the Courant number is 95% of the stability
limit. One-dimensional propagation.

0.604 085 9, whereas for the CDF (2, 2) it is 0.604 553 4 (both
scaling and one level wavelet functions are taken in the expan-
sion). Also, the dispersion curves [6] are very similar, although
not identical. In Fig. 1, we plot the phase error (in degrees per
wavelength) measured as (the
expression involves the theoretical and numerical wavelengths),
as a function of the number of sampling points per wavelength,
in one-dimensional propagation. Three pairs of schemes were
compared [Daubechies-4 with CDF (2, 2), Daubechies-6 with
CDF (2, 4) and Daubechies-8 with CDF (2, 6)], while the
Courant number was taken to be 95% of the stability limit
for each scheme. We notice again the similar performance of
Daubechies- and CDF (2, ) schemes (the curves
are not identical, but they cannot be distinguished as plotted in
Fig. 1).

Finally, the stencil size of the numerical scheme [given by,
, , and in (2) or (7)] determines the number of floating

point operations executed at each time step. A low stencil size is
desirable in order to reduce the CPU time required by the algo-
rithm. The values of , , , and are given in Table II for
the MRTD schemes based on the same three pairs of expansions.
Once again, we notice very similar characteristics between the
Daubechies- and the CDF (2, ) schemes.

V. MRTD IMPLEMENTATION OF SCATTERING PROBLEMS

A. Plane-Wave Incident Field Implementation

Modeling of electromagnetic scattering problems with dis-
tant sources involves the implementation of the incident field as
a plane wave. For the MRTD algorithm, the incident field can
be implemented in a manner similar to that in the traditional fi-
nite-difference time-domain (FDTD) scheme, i.e., splitting the
computational domain into two regions: one of total fields and
the other of scattered fields only, separated by a connecting sur-
face [7]. The incident field is introduced as a “boundary con-
dition” at this surface, in order to enforce the continuity of the
tangential field components. This idea was used in [2], where
the MRTD method based on the Haar wavelet system was uti-

lized in modeling scattering problems. The extension to other
wavelet bases is straightforward. If the update equations involve
more than one field scaling/wavelet coefficient on each side of
the current point (which now is placed next to the connecting
surface), all the field coefficients placed on the other side of the
connecting surface must be adjusted by the appropriate incident
field scaling/wavelet coefficients, such that we preserve the con-
sistency of the equations.

B. Modeling Material Inhomogeneities

The treatment of inhomogeneous media configurations in the
context of MRTD poses significant problems, because the ma-
terial properties, as functions of space, introduce coupling be-
tween adjacent basis functions. In [1], the inhomogeneities are
treated rigorously, using a matrix formulation. The authors of
[3] and [4] make use of the shifted interpolation property of
the Daubechies scaling functions in order to simplify the equa-
tions. In this section, we present the exact formulation of the
CDF-MRTD equations at a dielectric interface and discuss the
approximations that can be made in order to simplify the for-
mulation.

Let us assume a one-dimensional (1-D) expansion in terms of
scaling functions from the CDF (2, 2) wavelet family. In Fig. 2,
the interface is placed at the coordinate , and the permit-
tivities on the two sides are and , respectively. The scaling
and dual scaling basis functions which get coupled through
are schematically drawn in the same figure. The cross terms be-
tween MRTD equations appear when the integrals

(10)

are nonzero. In the case of CDF (2, 2) scaling functions, this
occurs when , (see Fig. 2). Therefore, dis-
cretization of the equation about the
point of coordinate leads to a set of three coupled MRTD
equations

(11a)

(11b)

(11c)

We have used simplified notation for the curl terms on the
right-hand side, meaning the scaling-level discretized version
of the spatial derivative of the magnetic field component, at
the current point (e.g.,) and the current time step. With the
notation
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TABLE II
STENCIL SIZES FORDAUBECHIES-(M + 2) AND CDF (2,M ) MRTD SCHEMES

Fig. 2. Support of the CDF (2, 2) scaling and dual-scaling basis functions
involved in coupling through a permittivity discontinuity. The discontinuity is
placed at a grid point. Note that the supports of the scaling/dual scaling functions
are drawn schematically—they do not represent the graphs of the actual basis
functions.

we obtain the following matrix equation:

(12)

Notice that , , and . A
similar treatment is obtained by considering lossy medium, with
a frequency-independent conductivity (see [2]). The formula-
tion can be generalized to any basis of symmetric scaling func-
tions (including higher order CDF or Battle–Lemarie wavelet
families). If the scaling function has a support of length
and the dual scaling function has a support of length ,
then the -matrix has dimensions , where

, and a band-diagonal structure, with
nonzero diagonals.

In the case where the interface does not coincide with a grid
line, as in Fig. 3 [where the boundary falls between the coor-
dinates and ], the formulation is similar, only
this time we have four coupled equations [for CDF (2, 2) expan-
sion], involving the field expansion coefficients at points ,

, , and . The -matrix has the following structure:

(13)

Fig. 3. Support of the CDF (2,2) scaling and dual scaling basis functions
involved in coupling through a permittivity discontinuity. The discontinuity is
placed in between grid points. Note that the supports of the scaling/dual scaling
functions are drawn schematically—they do not represent the graphs of the
actual basis functions.

If wavelet functions are considered in the expansion, the situ-
ation complicates even further, because of the coupling that ap-
pears between the scaling and wavelet functions. Without going
into detail, we indicate the structure of the-matrix in the case
of the CDF (2, 2) expansion involving scaling and one-level
wavelet functions:

(14)

where the s symbolize nonzero entries.
The presence of the matrix equations, although limited to

regions close to the interface, introduces extra calculations that
reduce the computational efficiency of the algorithm. In theory,
one can compute and invert the-matrices for a given media
configuration at the beginning of the program, and then add the
extra terms to the appropriate equations at each time step (notice
that the inverse -matrices have identical structures with the
original -matrices for all the cases discussed above). However,
for a general two- or three-dimensional scattering problem,
and inhomogeneities of irregular shapes, this procedure be-
comes cumbersome and the whole algorithmic simplicity of
the MRTD method is lost. Based on the work in [3], [4], we
propose the approximation of the-matrices by keeping only
their diagonal elements. This greatly simplifies the MRTD
formulation by decoupling the update equations. The quality
of this approximation depends on the relative magnitude of
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the off-diagonal elements. In reference to Figs. 2 and 3, we
can make the following observations: a) the off-diagonal terms
are larger when the contrast between the two media is greater;
b) the largest off-diagonal term is minimal when the interface
is placed exactly half-way between two grid points. Also, the
approximation made by truncating the off-diagonal elements is
better as the size of the matrix is smaller. This is another reason
for choosing scaling/wavelet functions with minimal support,
like the CDF (2, 2) family (as opposed to higher-order CDF or
Battle–Lemarie wavelet families). The resulting MRTD update
scheme involves the equations in (7), whereis replaced by
the diagonal elements of the-matrices [computed according
to (10)]. Such a scheme resembles the classic FDTD algorithm,
where the material properties are sampled pointwise at the
current grid point. This approach can be justified by the fact
that, in the limit of very small discretization steps, the scaling
functions behave like delta impulses.

In order to quantify the errors made by the approximation
described above, we studied scattering by canonical dielectric
targets, with different permittivity contrasts with respect to the
background medium. The reference solution was obtained by
the FDTD algorithm with a sampling rate of at least 12 points
per wavelength at the smallest wavelength present in the com-
putational domain. The CDF (2, 2)-MRTD solution studied in-
volved a scaling function expansion only, and a discretization
rate half of that used by the FDTD algorithm (based on the dis-
persion curves in [6]). We measured the relative error of the
far-zone frequency response magnitude, over a wide band of
frequencies. Our results show that, up to a contrast of 4 : 1 in
permittivity, the errors made in the CDF (2, 2)-MRTD imple-
mentation are typically under 3%, and even when the contrast
was increased up to 12 : 1, the errors did not exceed 7% (the re-
sults are generally very good as a function of frequency, with
most of the discrepancy seen in the frequency-localized nulls of
the scattered spectrum).

The errors introduced by a diagonal approximation to the per-
mittivity matrix do not increase simply with increasing dielec-
tric contrast. In particular, as the dielectric contrast increases
the scaling-function support decreases (in order to maintain the
same sampling rate per wavelength inside the dielectric). As
indicated above, the accuracy of the diagonal approximation
improves with decreasing scaling-function support (since the
scaling function better represents delta-function-like sampling).
Therefore, the expected increased error due to increased dielec-
tric contrast is mitigated by the reduced size of the scaling func-
tions. We investigate these issues further in Section VI, where
we present some numerical results.

C. Absorbing Boundary Conditions

The absorbing boundary conditions (ABCs) for the MRTD al-
gorithm can be implemented as a perfectly matched layer (PML)
[7]. Since the PML consists of several successive layers with
different material properties, a rigorous implementation within
the MRTD algorithm would involve large- and -matrices,
reflecting the mutual coupling between all the scaling/wavelet
functions corresponding to those layers. However, the imple-
mentation can be simplified using the approximations discussed
in the previous section, i.e., neglecting the coupling between up-

Fig. 4. Computational domain for the numerical example in Section VI. It
consists of two rectangular dielectric cylinders placed in free space. The central
wavelength is� = 10 cm.

date equations corresponding to adjacent layers. Our tests show
no significant difference in the reflection coefficient between
the rigorous and approximate implementations of the PML.

We also need to address the outer boundary of the computa-
tional grid, which is traditionally terminated by a perfect elec-
tric (or magnetic) conductor (PEC or PMC). Since updating the
fields at points close to the boundary requires some field coeffi-
cients outside the domain, we can use image theory in order to
obtain these coefficients. However, image theory becomes ex-
tremely complicated in the presence of a layered medium next
to the boundary, and therefore its rigorous application is not
practical. Instead, we notice that, if the PML is thick enough
(compared to the stencil size), the magnitude of the field coef-
ficients close to the boundary is very small and therefore errors
made in computing these terms do not have a significant im-
pact on the reflection coefficient. Our tests on a PML of just
eight layers, in the context of a CDF (2, 2)-MRTD two-dimen-
sional (2-D) implementation, show reflection coefficients no
more than 70 dB, when the field coefficients outside the com-
putational domain were simply set to zero.

VI. NUMERICAL RESULTS

In this section, we present the results of 2-D simulations ob-
tained with the CDF (2, 2)-MRTD scheme on scattering by di-
electric targets and compare them with the FDTD solutions.
The configuration is described in Fig. 4 and consists of two di-
electric rectangular cylinders placed in free space at a relatively
large distance with respect to each other. For the MRTD imple-
mentation, we use wavelet functions only in the shaded areas
around the targets. This kind of configuration, in which targets
are placed at relatively large distances from one another in a ho-
mogeneous medium, is particularly suitable for the MRTD al-
gorithm, because the coverage with high-resolution basis func-
tions is modest compared to the entire computational domain.
Therefore, significant savings in terms of computer memory can
be obtained as compared to the Yee algorithm using a uniform
mesh.

The excitation consists of a pulsed plane wave, with the in-
cident waveform given by the fourth-order Rayleigh pulse [10],
centered at 3 GHz (Fig. 5). We consider TE (horizontal) polar-
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(a)

(b)

Fig. 5. The incident pulse (Rayleigh, fourth-order) in the: (a) time and
(b) frequency domains. The central frequency is 3 GHz.

Fig. 6. Time-domain scattered field for the configuration in Fig. 4 and" = 2.
The two curves are almost identical.

ization. The incidence angle is 45and the observation is made
in the backscatter direction, in the far zone. We consider three
permittivities for the targets: . For FDTD, we use
a discretization rate of samples per central wavelength
( ) in air and a Courant number of 0.6. For the CDF-MRTD, we
use a grid with samples per central wavelength in air. The

Fig. 7. Time-domain scattered field for the configuration in Fig. 4 and" = 4.
The two curves are almost identical.

Fig. 8. Time-domain scattered field for the configuration in Fig. 4 and" = 8.
The two curves are almost identical.

Courant number is 0.3, therefore the time step is twice as large as
for FDTD. The wavelets cover about 12% of the MRTD com-
putational domain, so the total number of scaling and wavelet
coefficients is about 1.36 times the total number of MRTD cells.
This means that we expect MRTD to utilize about 12 times less
memory than FDTD, and to run about 6 times faster. However,
our numerical experiments show that the increase in computa-
tional speed is more significant (typically, about 11 times). We
attribute this to the fact that the MRTD update equations are
more efficiently processed on the particular type of computer
(Pentium III) that we used in our simulations. The MRTD di-
electric matrices are approximated as diagonal, as discussed in
Section V-B.

The resulting waveforms, plotted in Figs. 6–8, show very
good agreement between the two methods, even for permittivity
contrasts as high as 8 : 1. This validates our approximations de-
scribed in Section V-B and also illustrates the clear advantage
of the method versus the traditional FDTD algorithm in terms
of computational resources for this kind of application.

VII. CONCLUSION

In this paper, we compared the MRTD algorithms based on
certain families of compactly supported wavelets and applied
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them to the analysis of electromagnetic scattering problems.
The low-order orthogonal Daubechies and biorthogonal CDF
wavelet systems offer good computational efficiency, especially
because of their low stencil size and the high Courant stability
limit (the latter enabling the choice of a large time step). We
also formulated an algorithm for the calculation of the MRTD
coefficients, which avoids the numerical integration utilized
by previous authors. We concluded that the schemes based on
Daubechies- and CDF (2, ) basis functions have
very similar performances, although the formulations are not
identical. The discussion on applying the CDF (2,)-MRTD
to a scattering analysis included the implementation of the
plane-wave incident field, material inhomogeneities, and the
ABCs, as well as numerical examples. We demonstrated
that the approximation made in the treatment of dielectric
boundaries keeps the implementation simple and efficient and
at the same time yields accurate results. The computational
savings of the CDF (2, 2)-MRTD scheme versus the traditional
FDTD method were clearly demonstrated in a numerical
example. In future work, we will extend these MRTD schemes
to three-dimensional problems.
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