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Scattering Analysis by the Multiresolution
Time-Domain Method Using Compactly
Supported Wavelet Systems

Traian Dogaru and Lawrence Cayrirellow, IEEE

Abstract—\We present a formulation of the multiresolution limit [6], which in turn yield a computationally efficient scheme.
time-domain (MRTD) algorithm using scaling and one-level Another advantage of the reduced support of the basis functions

wavelet basis functions, for orthonormal Daubechies and . . . .
biorthogonal Cohen-Daubechies—Feauveau (CDF) wavelet fami- becomes apparent as we discuss the implementation of material

lies. We address the issue of the analytic calculation of the MRTD bound"_"ries-
coefficients. This allows us to point out the similarities and the dif- In this paper, we focus on the compactly supported wavelets

ferences between the MRTD schemes based on the aforementionedrom the orthonormal Daubechies and biorthogonal CDF fam-

wavelet systems and to compare their performances in terms of jioo First the Daubechies MRTD scheme is extended to in-
dispersion error and computational efficiency. The remainder of

the paper is dedicated to the implementation of the CDF-MRTD  clude first-level wavelet functions (Section Il). After reviewing
method for scattering problems. We discuss the approximations the CDF-MRTD formulation (Section Ill), we introduce an al-

made in implementing material inhomogeneities and validate the gorithm for the analytic computation of the MRTD coefficients,
method by numerical examples. which is faster, more accurate, and more general than the numer-
Index Terms—Multiresolution analysis, scattering, time-domain ical integration utilized in [1]-[6]. A comparison between the
methods, wavelets. MRTD schemes based on low-order orthonormal Daubechies
and biorthogonal CDF wavelet systems in terms of numerical
|. INTRODUCTION performance is presented in Section IV. In order to implement

the CDF-MRTD scheme for scattering problems, we discuss

I HE multiresolution time-domain (MRTD) method [1}-[5] ,,geling the material inhomogeneities and the plane-wave in-
has recerytly.emerged asan efﬂmeqt to-ol for. t'me'qomaﬂ?dent field (Section V). In Section VI, we present numerical
electromagnetic field analysis, with applications including M ts on two-dimensional scattering configurations, empha-

crowave cavities and circuits [1], [3], [4] as well as SC""tteringizing the efficiency of the method. Conclusions are drawn in
by general targets [2]. In many cases, MRTD can save import@@ction VI

computational resources, as compared to the traditional finite-

difference time-domain method [6], without sacrificing solu-

tion accuracy. The main mechanisms by which MRTD achievds MRTD BASED ON ORTHONOMAL DAUBECHIES WAVELETS

computational efficiency are the higher order accuracy in the

spatial finite-difference approximations and the multiresolution’

partitioning of the computational domain. With regard to the The MRTD algorithm based on compactly supported or-

latter, denser resolution is employed in zones with relatively fa§©onormal Daubechies scaling functions was presented in [3]

spatial field variation, while applying a lower resolution repre@nd [4]. Here, we extend the algorithm to include one-level

sentation in slowly varying regions. Wave_let function_s,_ from which we _obtain a mgltiresqlution
In the existing literature on MRTD, the basis functions o?.'gor',th,m' Rest_nctmg the presentation to one dimension (for

choice have included the Battle—Lemarie wavelet family [1], tiimMPlicity), the field expansion can be written as

Haar wavelet family [2], the Daubechies scaling functions [3],

Formulation

[4], the Deslauriers—Dubuc interpolating functions [5] (which o0

are related to the Daubechies wavelets), and the biorthogor@l(z, t) = > [EX ,®m(z) + B, Uy (2)] ha(t)
Cohen—Daubechies—Feauveau (CDF) wavelet systems [6]. In a k, m=—c0

previous paper [6], we demonstrated the advantages of the CDF (1a)
wavelet systemsis-a-visthe Battle-Lemarie or Haar wavelet = ® -

families. In general, the choice of basis functions with minimaty (% 1) = Z [H @1 /2(%) + Hi oy W y2(2)]

k, m=—o0

support leads to a small stencil size and a large Courant stability
“Pig1/2(2). (1b)
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shift in time units. The MRTD magnetic-field update equationae introduce the following correlation coefficients:

are
Hk,m:Hk—l,m‘f‘m k &
o ) > e ) - Fn =2 Z hkgk—l—n 671, =2 Z gkhk—l—n
: Z a(Z)Ek, m-i + Z C(Z)Ek,nl+i k k
t=—ng+1 t=—n.+1
(2a) withn = —L 4+ 2, ..., L — 2, with the sums ovek running
v v At frommax(0, —n) andmin(L — 1, L — 1 — n). In the abovel
Hy o =Hp_1 o + m is the length of the nonzero scaling filter coefficient sequence.
na e We start with the calculation of the coefficient§i) =
. < Z d(i)E;f,eri + Z b(i)EﬁmH) f(aé(x)/a_x)_@(a: — i) dz, as described_ in [_8]. Specifica-lly,
P im g1 these coefficients must satisfy the following linear system:
(2b) o
At (S (i) = @2itn)  (4a)
P _pd , i (e a,r(2t+n
Ek-l—l,m _Ek,m + E <i:zn:+l a([’)Hk,m-I—i—l n=;+2
Ne L—2
+ > c(i)HEme_l) (2¢) S (i) =-1. (4b)
i=—n.+1 i=—L+2
\ R\ At o . 1 1 i i
EkP+l,rn :Ekum + ~ Z d(z)H,fj i1 Notice t_hgt one of the equations in (4) is redundant_ an_d that
ERT N\, only a finite number of coefficients(¢) are nonzero, with in-
np dices running from-L + 2 to L — 2. Once these coefficients
+ Z b(i)H,:fnl+i_1> (2d) were found, the MRTD coefficients are given by the following
i=—np+1 expressions:
where L—-1
00(2) a(i) =— Z (20 +n—1) (5a)
a(i) = 3 O(x+¢—1/2)dz n=—L+1
* L—1
ov 2 — (95
i) = (2) W +i—1/2)ds biy=— > Bur(2i+n-—1) (5b)
Oz n=—L+1
. oV (x) . L1
i) = Ep S(z+i—1/2)dx (i) = — Z V(20 +n — 1) (5¢)
n=—L+1
ad
d(4) :/ 8(”“") U(z+i—1/2)dx 1
X
diy=— > b.r(2i+n—1). (5d)
are the MRTD coefficients. n=—L+1
B. Calculation of the MRTD Coefficients Again, the number. of nonzero MRTD coefficients js fini.te
and we can establish the following symmetry relationships:

In previous MRTD papers based on Daubechies scaling fur;,(a-_i) = r(3), a(—i)
tions (as well as other MRTD schemes), the MRTD coeﬁicieng_i) = —d(i+1).
a, b, c andd were computed by numeric integration (usually in
the Fourier domain). However, based on the algorithm presented”l_
in [8], these coefficients can be derived analytically in the case )
of compactly supported wavelet systems, starting directly froft Formulation
the scaling/wavelet filter coefficients [9], without the need to ex- The biorthogonal CDF-MRTD scheme was introduced and
plicitly compute the scaling/wavelet functions (or their Fouriegnalyzed in detail in [6]. In this paper, we consider only the
counterparts). Using the definition of the scaling and wavelgymmetric CDF (2)/) families of wavelets (wher@/ is half
filter coefficients the support length of the scaling function), for the purpose of
comparison with the orthonormal Daubechies wavelet families.
The field expansions in one dimension can be written as

= —a(i + 1), b(—i) = —b(i + 1),

MRTD B ASED ON BIORTHOGONAL CDF WAVELETS

o(x) =2 f hy®(2x — k) (3a)

oo

Ee, )= 3 |BL @)+ B, V()] hu(t)

L—1
= . — b k, m=—oc
V(x) x/ikzjzogwmw k) (3b) -
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o . . L/2
Hye )= Y [HEwuiiya() + B,y o(@)] ba)=v2 > Iud(2r k) (8¢)
k, m=—o0 k=—L/2
The above notation assumes that bétfr) and ¥(x) peak Ve+1/2)=v2 Y G2 —k). (8d)
atz = 1/2. We obtain the following magnetic field update h=—1/2
equations: In the aboveL + 1 = 2M + 1 indicates the length of thi;,

o _ g
Hk,rn _Hk—l,rn

At e

1=—n,

v _ g
Hy o =Hy

,m —1,m

At [N e s
+m<z ADEL it Y bHE

=g t=—np+Hl

D _
Ek—l—l, m Ek,rn

i=—ng4l

P=—"Ne

NG _ ¥
Ek-l—l,rn =k,

k,m

+ Ei—tx <§ d(i)Hﬁnm+i_i+l b(i)
where
a(i) = / 8‘2;””) O(zr+i—1/2)dw
b(i) = / a\gix) U(z+i—1/2)de
o(d) = / a‘gf) Oz +i—1/2)dx
d(i) :/a&;f) U(z +i +1/2) da.

B. Calculation of the MRTD Coefficients

a(i)Ep i+ Z c(d)

v
Ek,rn—l-i

At - N .
+5A$< Z a([[’)Hk,nH-‘ifl—i_‘Z e(i

filter-coefficient sequence (notice that we use a symmetric form
of this sequence, with indices running fronl./2 to L/2). We
also bring the other filter coefficient sequenggsh;., andgy. to

) the same length, by zero-padding where needed. The correlation
coefficients are defined as

(7a) B
O =2 Z hkhk+n7 Bn =2 Z Gk Jk—+n
k k
;‘me_‘i_1> Yn =2 Z hkgk-l—nv Op =2 Z gkilk-l—n
k k
(7b)

with n = —L,... L, and the sums ovek running from
max(—L/2, —L/2 + n) andmin(L/2 — n, L/2). One can
J(0®(x)/0x)®(x — i) dx

show that the coefficients(:) =
ng’nm formally satisfy the same set of equations as indicated in (4a)
’ and (4b). From here, the MRTD coefficients are computed as
(7c) follows:
L
a(i) =— Y anr(2i+n—1) (9a)
H’\}!nm n=—1"L
’ L
(7d) i) == > Par(2i+n—1) (9b)
L
e(i) =— Z (20 +n) (9c)
n=—1L
I
d(i) =— > 6,72 +n). (9d)

n=—L
The following symmetry relationships can be established:
r(—i) = r(i), a(—4) = —ali + 1), b(—i) = =b(i + 1),
o(—t) = —ci), d(—i) = —d(3).
IV. ANALYSIS OF DAUBECHIES4 AND CDF (2, 2)
MRTD SCHEMES

In this section, we explicitly compute the MRTD coefficients
for the Daubechies-4 wavelet family (i.d., = 4) and for the

The calculation of the MRTD coefficients in the case of the:DF (2, 2) wavelet family. The values of the nonzero correla-

CDF (2, M) biorthogonal wavelet expansion is similar to th

Afion coefficientsa, 3, v, 6, as well as the MRTD coefficients

described for the Daubechies wavelet-based MRTD schemea!nb, ¢, andd are given in Table |. As expected, thecoeffi-

this case, we define

L2
d(z) =V2 Z I ®(2x — k)
k=—L/2
L/2
V(r+1/2)=V2 Y. a®2r-k)

k=—T/2

cients are the same for the two wavelet families, which means
that the MRTD schemes based only on scaling functions from
these families are completely equivalent. However,dhedd

(8a) coefficients are different for the two wavelet families; therefore,
the two MRTD schemes are not identical at the wavelet-expan-
sion level. Similar conclusions can be drawn in general when

(8b) one compares the MRTD schemes resulting from expansions in

terms of Daubechie&a/ + 2) and CDF (2,{) basis functions.
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TABLE |
(a) CORRELATION COEFFICIENTS FOR THEDAUBECHIES-4 WAVELET FAMILY . (b) MRTD COEFFICIENTS FOR THEDAUBECHIES-4 SCHEME.
(c) CORRELATION COEFFICIENTS FOR THECDF (2, 2) WAVELET FAMILY . (d) MRTD COEFFICIENTS FOR THECDF (2, 2) SHEME

3 2 -1 0 1 2 3
-0.1250000 0 1.1250000 2.0000000 | 1.1250000 0 -0.1250000
0.1250000 0 -1.1250000 | 2.0000000 | -1.1250000 0 0.1250000
-0.4665064 0 0.9665064 0 -0.5334936 0 0.0334936
0.0334936 0 -0.5334936 0 0.9665064 0 -0.4665064

@
i 2 -1 0 1 2 3

r -0.0833333 0.6666667 0 -0.6666667 0.0833333 0

a -0.0104167 0.0937500 -1.2291667 1.2291667 -0.0937500 0.0104167

b 0.0104167 -0.0937500 -1.437500 1.437500 0.0937500 -0.0104167

¢ -0.0388755 0.0805422 -0.0055823 -0.0777511 0.0444578 -0.0027911

d 0.0027911 -0.0444578 0.0777511 0.0055823 -0.0805422 0.0388755

(b)
-4 3 2 -1 0 1 2 3 4
0 -0.1250 0 1.1250 2.0000 1.1250 0 -0.1250 0
0 0.1250 0 -1.1250 | 2.0000 | -1.1250 0 0.1250 0
0.0625 0 -1.0000 0 1.8750 0 -1.0000 0 0.0625
0 0 -0.2500 0 0.5000 0 -0.2500 0 0
(©
-3 -2 -1 0 1 2 3
0 -0.0833333 | 0.6666667 0 -0.6666667 | 0.0833333 0
0 -0.0104167 | 0.0937500 | -1.2291667 | 1.2291667 | -0.0937500 | 0.0104167
0 0.0104167 | -0.0937500 | -1.437500 1.437500 | 0.0937500 | -0.0104167
0.0052083 | -0.0833333 | 0.1510417 0 -0.1510417 | 0.0833333 | -0.0052083
0 -0.0208333 | 0.0416667 0 -0.0416667 | 0.0208333 0
(d)

We can also compare other aspects related to the computhae stability analysis [6] shows that the Courant numbers
tional efficiency and performance of the MRTD schemes basatithe stability limit are not identical, but very close for the
on Daubechies? + 2) or CDF (2, M) wavelet families. two schemes. In particular, for Daubechies-4, this limit is
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12 lized in modeling scattering problems. The extension to other
x g gp
N COFE.2) wavelet bases is straightforward. If the update equations involve
| CDF(2.,4) 9 P q
101 SN CDF 26) more than one field scaling/wavelet coefficient on each side of
3\ ‘\ DauM’ the current point (which now is placed next to the connecting
81 Y - —m— Doubet surface), all the field coefficients placed on the other side of the
“\"\ w4 Daub-8 connecting surface must be adjusted by the appropriate incident

field scaling/wavelet coefficients, such that we preserve the con-
sistency of the equations.

Phase error (degrees)
a

B. Modeling Material Inhomogeneities

The treatment of inhomogeneous media configurations in the
context of MRTD poses significant problems, because the ma-
0 ' ‘ ' terial properties, as functions of space, introduce coupling be-
tween adjacent basis functions. In [1], the inhomogeneities are
treated rigorously, using a matrix formulation. The authors of
Fig. 1. Phase error (in degrees per wavelength) versus discretization rate[8f and [4] make use of the shifted interpolation property of
wavelet funciions. For all schemes, the Courant mumber é%‘!—!%éﬁﬂé’@%‘é@b Daubechies scaling functions i order to simplify the equa-
limit. One-dimensional propagation. tions. In this section, we present the exact formulation of the
CDF-MRTD equations at a dielectric interface and discuss the
o approximations that can be made in order to simplify the for-
0.604 0859, whereas for the CDF (2, 2) it is 0.604 553 4 (bofi,1ation.
scaling and one level wavelet functions are taken in the expany ¢t s assume a one-dimensional (1-D) expansion in terms of
sion). Also, the dispersion curves [6] are very similar, althouggba|ing functions from the CDF (2, 2) wavelet family. In Fig. 2,
not identical. In Fig. 1, we plot the phase error (in degrees p§fe interface is placed at the coordinataz, and the permit-
wavelength) measured 880((Acontimuous/Adiscrete) = 1) (e ivities on the two sides are andes, respectively. The scaling
expression involves the theoretical and numerical wavelengthg)g qual scaling basis functions which get coupled thratgh
as a function of the number of sampling points per wavelengllye schematically drawn in the same figure. The cross terms be-

in one-dimensional propagation. Three pairs of schemes WgiRen MRTD equations appear when the integrals
compared [Daubechies-4 with CDF (2, 2), Daubechies-6 with

CDF (2, 4) and Daubechies-8 with CDF (2, 6)], while the o -

Courant number was taken to be 95% of the stability limit ij /E(x)q)"“(x)(bnﬂ(x) dx (10)

for each scheme. We notice again the similar performance of

DaubechiesM + 2) and CDF (2,M) schemes (the curvesare nonzero. In the case of CDF (2, 2) scaling functions, this

are not identical, but they cannot be distinguished as plotteddcurs whenj = 0, ¢ = —1, 0, 1 (see Fig. 2). Therefore, dis-
Fig. 1). cretization of the equatioa(0LE./0t) = dH,/0x about the

Finally, the stencil size of the numerical scheme [giverpy Point of coordinate:Az leads to a set of three coupled MRTD
ny, ne, andng in (2) or (7)] determines the number of floatingequations
point operations executed at each time step. A low stencil size is@ ° ° . ° °
desirable in order to reduce the CPU time required by the algo£ =1, —1 (Eit1,ne1 = Erne1) + €270 (Eipi,n — Bk n)

Points-per-wavelength

rithm. The values o, n;, n., andng are given in Table Il for At (8H, o
the MRTD schemes based on the same three pairs of expansions. = Ar < O ) (11a)
Once again, we notice very similar characteristics between the C’I‘;’ nl
Daubechies\/ + 2) and the CDF (2)) schemes. At (9H,
W +2) (M) 2 (Bl — BLL) = 5o ( ) (11b)
V. MRTD IMPLEMENTATION OF SCATTERING PROBLEMS et 0 By — Eon) + et (Bprmgr — Exngt)
A. Plane-Wave Incident Field Implementation _ At <8Hy>q’ (11c)
Modeling of electromagnetic scattering problems with dis- Az \ 9z )y i

tant sources involves the implementation of the incident field as R )
a plane wave. For the MRTD algorithm, the incident field cali/e have used simplified notation for the curl terms on the

be implemented in a manner similar to that in the traditional fi9ht-hand side, meaning the scaling-level discretized version

nite-difference time-domain (FDTD) scheme, i.e., splitting th@f the spatial derivative of the magnetic field component, at
computational domain into two regions: one of total fields anfi€ current point (e.gn) and the current time stefp With the

the other of scattered fields only, separated by a connecting Siftation

face [7]. The incident field is introduced as a “boundary con- PP PP 0
o . . S —1,-1 —1,-0

dition” at this surface, in order to enforce the continuity of the .

tangential field components. This idea was used in [2], where [e] = 0 €0,0 0

the MRTD method based on the Haar wavelet system was uti- 0 e 22



DOGARU AND CARIN: SCATTERING ANALYSIS BY MRTD METHOD USING COMPACTLY SUPPORTED WAVELET SYSTEMS

1757

TABLE I
STENCIL SizES FORDAUBECHIES-(M + 2) AND CDF (2,M) MRTD SCHEMES
Daub-4 Daub-6 Daub-8 CDF (2,2) | CDF (2,4) | CDF (2,6)
Ha 3 5 7 3 5 7
ny 3 5 7 3 5 7
ne 3 5 7 3 6 9
ng 3 5 7 2 3 4

(n+2)Ax (n+4)Ax
(n+1)Ax (n+3)Ax

(n-2)Ax nix
(n-1)Ax )

(n-3)Ax (n+1)Ax (n+3)Ax

£ £ o B

»
» < »

<
<

Fig. 2. Support of the CDF (2, 2) scaling and dual-scaling basis functiofég. 3. Support of the CDF (2,2) scaling and dual scaling basis functions
involved in coupling through a permittivity discontinuity. The discontinuity isinvolved in coupling through a permittivity discontinuity. The discontinuity is
placed at a grid point. Note that the supports of the scaling/dual scaling functigstaced in between grid points. Note that the supports of the scaling/dual scaling
are drawn schematically—they do not represent the graphs of the actual baaigtions are drawn schematically—they do not represent the graphs of the
functions. actual basis functions.

we obtain the following matrix equation: If wavelet functions are considered in the expansion, the situ-

ER .. ER | (0H,/0z)? | ation complicates even.further, because of the coup_ling that ap-
A ’ ’q) At ’q) pears between the scaling and wavelet functions. Without going
Eivin |=| Bion |+, [ (0H,/0x)y; ,, into detail, we indicate the structure of thematrix in the case
E1?+1 il EP il (0H, /9x)® il of the CDF (_2, 2) expansion involving scaling and one-level
' ' ' wavelet functions:
(12)
x x 0 x x
Notice thatf?(i _1 = €1, 6(11)7(11) = €9, and{fg)’% = (61 +€2)/2 A 0 x 0 x X
similar treatment is obtained by considering lossy medium, with ]=]0 x x x x (14)
a frequency-independent conductivity (see [2]). The formula- 0 x 0 x x
tion can be generalized to any basis of symmetric scaling func- 0 X 0 X x

tions (including higher order CDF or Battle—Lemarie wavelet

families). If the scaling functio® has a support of length/ where thexs symbolize nonzero entngs. -
and the dual scaling functiof has a support of lengtal7, The presence of the matrix equations, although limited to

then thee-matrx has dimensioneP + 1) x (2P + 1), where 2800 02 e o o Intheory.
P = M+ M -2, and a band-diagonal structure, with+ 1 one can com Ize and invert than;tr'ces fo?a i eﬁ media ,
nonzero diagonals. pu inv ! giv '

In the case where the interface does not coincide with a gﬁanfiguration at the beginning of the program, and then add the

line, as in Fig. 3 [where the boundary falls between the cod Xtra terms to the appropriate equations at each time step (notice

dinatesnAz and(n + 1)Az], the formulation is similar, only t r?tirtlgle 'm’:trrsii'ggggle;:?;iégz?stfl?sl:et;uacg%rvej Vlﬁg]w?vir
this time we have four coupled equations [for CDF (2, 2) expaﬁ- ginale )- ’

sion], involving the field expansion coefficients at points- 1, aonr da'ngheonme(r)alemqt-'ezr c;tfhr_?r(-:(;-d|rlr;?nssrl](;nilssigﬁéerlrgcgéolr)ée?é_
n,n + 1, andn + 2. Thee-matrix has the following structure: ' geneit Irregu pes, this p u

comes cumbersome and the whole algorithmic simplicity of

e2P 1 €20 €22, 0 the MRTD method is lost. Based on the work in [3], [4], we
0 S o propose the approximation of tkematrices by keeping only
[e] = . . (13) their diagonal elements. This greatly simplifies the MRTD
0 1,0 €11 formulation by decoupling the update equations. The quality
0 e 22 29 of this approximation depends on the relative magnitude of
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PML Scattered field only

the off-diagonal elements. In reference to Figs. 2 and 3, w
can make the following observations: a) the off-diagonal term:
are larger when the contrast between the two media is greate[f~——g————————
b) the largest off-diagonal term is minimal when the interfacel; Higher-resolution
is placed exactly half-way between two grid points. Also, thel] g:?jj:f*‘”ave‘e“’
approximation made by truncating the off-diagonal elements i
better as the size of the matrix is smaller. This is another reasc|,
for choosing scaling/wavelet functions with minimal support, ||
like the CDF (2, 2) family (as opposed to higher-order CDF or
Battle—Lemarie wavelet families). The resulting MRTD update]
scheme involves the equations in (7), wheris replaced by |
the diagonal elements of thematrices [computed according |
to (10)]. Such a scheme resembles the classic FDTD algorithn|
where the material properties are sampled pointwise at the
current grid point. This approach can be justified by the fagfy 4. computational domain for the numerical example in Section VI. It
that, in the limit of very small discretization steps, the scalingpnsists of two rectangular dielectric cylinders placed in free space. The central
functions behave like delta impulses. wavelength is\. = 10 cm.

In order to quantify the errors made by the approximation _ ) )
described above, we studied scattering by canonical dielecl@l€ €quations corresponding to adjacent layers. Our tests show
targets, with different permittivity contrasts with respect to thB0 Significant difference in the reflection coefficient between
background medium. The reference solution was obtained ) rigorous and approximate implementations of the PML.
the FDTD algorithm with a sampling rate of at least 12 points YW also need to address the outer boundary of the computa-
per wavelength at the smallest wavelength present in the cdi#fnal grid, which is traditionally terminated by a perfect elec-
putational domain. The CDF (2, 2)-MRTD solution studied intfi¢ (or magnetic) conductor (PEC or PMC). Since updating the
volved a scaling function expansion only, and a discretizatidi§lds at points close to the boundary requires some field coeffi-
rate half of that used by the FDTD algorithm (based on the diglents outside the domain, we can use image theory in order to
persion curves in [6]). We measured the relative error of tffPtain these coefficients. However, image theory becomes ex-
far-zone frequency response magnitude, over a wide bandl§mely complicated in the presence of a layered medium next
frequencies. Our results show that, up to a contrast of 4: 1t the boundary, and therefore its rigorous application is not
permittivity, the errors made in the CDF (2, 2)-MRTD imp|epract|cal. Instead, we n_otl_ce that, if the EML is th|ck_enough
mentation are typically under 3%, and even when the Contréggmpared to the stencil S|ze)_, the magnitude of the field coef-
was increased up to 12 1, the errors did not exceed 7% (the ffeients close to the boundary is very small and therefore errors
sults are generally very good as a function of frequency, wifiade in computing these terms do not have a significant im-
most of the discrepancy seen in the frequency-localized nulisRict on the reflection coefficient. Our tests on a PML of just
the scattered spectrum). eight layers, in the context of a CDF (2, 2)-MRTD two-dimen-

The errors introduced by a diagonal approximation to the p&ional (2-D) implementation, show reflection coefficients no
mittivity matrix do not increase simply with increasing dielecore than-70 dB, when the field coefficients outside the com-
tric contrast. In particular, as the dielectric contrast increas@dtational domain were simply set to zero.
the scaling-function support decreases (in order to maintain the
same sampling rate per wavelength inside the dielectric). As VI. NUMERICAL RESULTS
indicated above, the accuracy of the diagonal approximation|n this section, we present the results of 2-D simulations ob-
improves with decreasing scaling-function support (since thgned with the CDF (2, 2)-MRTD scheme on scattering by di-
scaling function better represents delta-function-like samplingjectric targets and compare them with the FDTD solutions.
Therefore, the expected increased error due to increased diefe configuration is described in Fig. 4 and consists of two di-
tric contrast is mitigated by the reduced size of the scaling fungtectric rectangular cylinders placed in free space at a relatively
tions. We investigate these issues further in Section VI, wheggge distance with respect to each other. For the MRTD imple-
we present some numerical results. mentation, we use wavelet functions only in the shaded areas
around the targets. This kind of configuration, in which targets
are placed at relatively large distances from one another in a ho-

The absorbing boundary conditions (ABCs) for the MRTD almogeneous medium, is particularly suitable for the MRTD al-
gorithm can be implemented as a perfectly matched layer (PMg9rithm, because the coverage with high-resolution basis func-
[7]. Since the PML consists of several successive layers wiibns is modest compared to the entire computational domain.
different material properties, a rigorous implementation withimherefore, significant savings in terms of computer memory can
the MRTD algorithm would involve large- and o-matrices, be obtained as compared to the Yee algorithm using a uniform
reflecting the mutual coupling between all the scaling/wavelatesh.
functions corresponding to those layers. However, the imple-The excitation consists of a pulsed plane wave, with the in-
mentation can be simplified using the approximations discussgident waveform given by the fourth-order Rayleigh pulse [10],
in the previous section, i.e., neglecting the coupling between ugentered at 3 GHz (Fig. 5). We consider TE (horizontal) polar-

Connecting surface

Total field region

C. Absorbing Boundary Conditions



DOGARU AND CARIN: SCATTERING ANALYSIS BY MRTD METHOD USING COMPACTLY SUPPORTED WAVELET SYSTEMS

-04 0 0.4 08 12
Time (ns)

@)

20

101

Magnitude (dB)

-10 1

-20 t t t t t
0.0 20 4.0 6.0 8.0

Frequency (GHz)
(b)

1759

1.20E-02

——eFDTD
8.00E-03 -

-------- CDF (2,2)-MRTD

4.00E-03

0.00E+00

Amplitude (V/m)

-4.00E-03

-8.00E-03 -

-1.20E-02 T T T T
0 2 4 6 8 10

Time (ns)

Fig. 7. Time-domain scattered field for the configuration in Fig. 4ane: 4.
The two curves are almost identical.
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Fig. 8. Time-domain scattered field for the configuration in Fig. 4anek 8.

Fig. 5. The incident pulse (Rayleigh, fourth-order) in the: (a) time antthe two curves are almost identical.

(b) frequency domains. The central frequency is 3 GHz.
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Fig.6. Time-domain scattered field for the configuration in Fig. 4anek 2.
The two curves are almost identical.

ization. The incidence angle is 4and the observation is made
in the backscatter direction, in the far zone. We consider thr
permittivities for the targets:,. = 2, 4, 8. For FDTD, we use

Courant number is 0.3, therefore the time step is twice as large as
for FDTD. The wavelets cover about 12% of the MRTD com-
putational domain, so the total number of scaling and wavelet
coefficients is about 1.36 times the total number of MRTD cells.
This means that we expect MRTD to utilize about 12 times less
memory than FDTD, and to run about 6 times faster. However,
our numerical experiments show that the increase in computa-
tional speed is more significant (typically, about 11 times). We
attribute this to the fact that the MRTD update equations are
more efficiently processed on the particular type of computer
(Pentium I111) that we used in our simulations. The MRTD di-
electric matrices are approximated as diagonal, as discussed in
Section V-B.

The resulting waveforms, plotted in Figs. 6-8, show very
good agreement between the two methods, even for permittivity
contrasts as high as 8: 1. This validates our approximations de-
scribed in Section V-B and also illustrates the clear advantage
of the method versus the traditional FDTD algorithm in terms
8f6computati0nal resources for this kind of application.

VII. CONCLUSION

a discretization rate of0,/e,. samples per central wavelength
(Ae) inairand a Courant number of 0.6. For the CDF-MRTD, we In this paper, we compared the MRTD algorithms based on
use a grid withL0, /e, samples per central wavelength in air. Theertain families of compactly supported wavelets and applied
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them to the analysis of electromagnetic scattering problemsjs] ——, “Application of biorthogonal interpolating wavelets to the
The low-order orthogonal Daubechies and biorthogonal CDF ~ Galerkin scheme of time dependent Maxwell's equation&EE

| ff d . | effici iall Microwave Wireless Comp. Lettol. 11, pp. 22—-24, Jan. 2001.
wavelet systems offer good computational efficiency, especia y[6] T. Dogaru and L. Carin, “Multiresolution time-domain analysis using

because of their low stencil size and the high Courant stability = CDF biorthogonal wavelets|EEE Trans. Microwave Theory Tegkiol.
limit (the latter enabling the choice of a large time step). We __ 49. pp. 902-912, May 2001.

. . [7] A. Taflove, Computational Electrodynamics: The Finite-Difference
also formulated an algorithm for the calculation of the MRTD ™" Jiie-pomain Methad Norwood. MA: Artech House, 1995.

coefficients, which avoids the numerical integration utilized [8] G. Beylkin, “On the representation of operators in bases of compactly
by previous authors. We concluded that the schemes based on Supported waveletsSIAM J. Numer. Analysisrol. 6, pp. 1716-1740,

. . . Dec. 1992.
DaneCh'eS{M + 2) and CDF (Z'M) basis functions have [9] I. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,

very similar performances, although the formulations are not ~ 1992.
identical. The discussion on applying the CDF M)-MRTD [10] P. Hubral and M. Tygel, “Analysis of the Rayleigh puls&&ophysics
. L . : vol. 54, pp. 654-658, 1989.
to a scattering analysis included the implementation of the
plane-wave incident field, material inhomogeneities, and the
ABCs, as well as numerical examples. We demonstrated
that the approximation made in the treatment of dielectricaian Dogaru was born in Bucharest, Romania, in 1966. He received the engi-

boundaries keeps the implementation simple and efficient arpﬁfring degree from the Polytechnic University of Bucharest, Romania, in 1990,
. . . _ang the M.S. degree in electrical engineering and Ph.D. degree from Duke Uni-
at the same time yields accurate results. The computatiogkity, burham, NC, in 1997 and 1999, respectively.

savings of the CDF (2, 2)-MRTD scheme versus the traditionalFrom 1992 to 1995, he has held different engineering positions in the

EDTD method were cIearIy demonstrated in a numeric gnetic recording industry. He is currently a Research Associate with
. uke University, where his main research interests are in electromagnetic
example. In future work, we will extend these MRTD schem&gave theory, computational electromagnetics, rough surface scattering, and

to three-dimensional problems. radar-related signal processing.
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